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Storable Good Market

• Selling over multiple time periods, agents have a demand at each time.

• Goods are storable at a cost: 

If a good gives value  v at time  t, and is bought at time  s < t for price  p, 
then the buyer gets value  v ‒ p ‒ c · (t ‒ s), paying price and storage cost.

• Restaurant example:

Restaurant sells a yogurt dip. 

Price of yogurt changes every day, but expensive to store.

When to buy? Buy early and store? 
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Storable Goods Monopolist
• Wants to maximize revenue. Two pricing models:

• Pre-Announced Pricing (Commiting ahead of time) ΠPA

• Contingent Pricing (No-Commitment / Threat / Subgame Perfect) ΠCP

• Computing optimal prices are very different optimization problems!

Question: Which Strategy gives more revenue?

• Economic Effects at Play:
• Consumption Effect: Raising prices means fewer purchases

• Stockpiling Effect: Raising prices causes more storage, and earlier purchase

Storage is lost revenue, because they were willing to pay
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Example for Commit > Threat

• Contingent Pricing:  ΠCP = 2
It is optimal to set  p2 = 2, since subgame perfect.

If  p1 > 1, Alice doesn’t buy and Bob waits, so Rev = 2

If  p1 ≤ 1, Alice buys, and Bob buys early and stores, so Rev = 2 p1.

• Pre-Announced Pricing:  ΠPA = 2.999

Set  p1 = 1,  p2 = 1.999. 

Alice buys, Bob benefits from waiting instead of storing.
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Consumer t = 1 t = 2

Alice v = 1 No demand

Bob No demand v = 2

Suppose storage cost  c = 1
and consider demand as follows:



Example for Threat > Commit

• Pre-Announced Pricing:  ΠPA = 12
Set  p1 = 4,  p2 = 2, everyone buys. Or p1 = 6,  p2 = 6,  Alice buys.

• Contingent Pricing:  ΠCP = 14

If Alice doesn’t buy early and store, monopolist sets  p2 = 6 !

So set  p1 = 4,  Alice buys 2 units, and Bob buys 1, 

Then can set  p2 = 2 which gives  Rev = 14.
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Consumer t = 1 t = 2

Alice v = 6 v = 6

Bob v = 4 v = 2 

Suppose storage cost  c = 1
and consider demand as follows:



Results

• Deciding which pricing strategy to use is not straightforward!

• This paper: 
Let  N buyers and  T time steps, then at any subgame-perfect equilibria,
ΠPA ≤  ΠCP · O(log N + log T ),  and this bound is tight

• Past work [Berbeglia, Rayaprolu, Vetta]:
For any SPNE,  ΠCP ≤  ΠPA · O(log N + log T ),  and this bound is tight

• Coase conjecture (1972): Commitment always better than contingent.
• Proved true in infinite horizon, not true in general. [Gul et al., 1986]
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Proof of Upper Bound : ΠPA ≤  ΠCP · O(log N + log T )

• Introduce fixed price: commiting to a single price at all times. “ ΠF ”

• Clearly,  ΠF ≤  ΠPA,  but,  ΠPA ≤  Σvi ≤  ΠF · O(log N + log T ),
• If  v* is i-th best value, then j-th best value is at most (i/j) v*

• So Σvi ≤ v* Σ(i/j) ≤  ΠF · ln(NT)

• Want to show  ΠF ≤  ΠCP, 
Prove by showing that charging the optimal fixed price is suboptimal in the contingent 
setting, but sells at least as much as  ΠF.
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Tight Example

• Idea:  n consumers, each demanding at different times, 

• Consumer  i has value  1/i for one unit, lower indices consume earlier

• Storage cost  ≈ 1/n3

• Consumption times are spaced out just right so that, no one stores if 

pi = 1/i – (n – i + 1)/n3
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Tight Example
• No storage if  pi = 1/i – O(1/n2) but storage is better if  pi = 1/i 

• Total commitment revenue is  ≈ log(n) – 1/n 
• everyone buys at almost their total value

• However, contingent pricing equilibrium sells all-or-nothing at any time! So if 
you sell at time  i, you get  i · 1/i = 1 in total, and the game ends

• Seller’s strategy is to charge price  1/i when buyer  i has value
Buyer’s strategy is to only buy if someone has value, and price is good enough

• Seller cannot improve: charging less loses revenue and everyone still buys, charging more 
leaves some revenue on the table that will disappear in the next round.
- Buyer cannot improve since buying earlier means more savings
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Thank you
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